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Abstract. In this paper the concept of asymptotic complexity of lan-
guages is introduced. This concept formalises the notion of learnability in
a particular environment and generalises Lutz and Fortnow’s concepts of
predictability and dimension. Then asymptotic complexities in different
prediction environments are compared by describing the set of all pairs of
asymptotic complexities w.r.t. different environments. A geometric char-
acterisation in terms of generalised entropies is obtained and thus the
results of Lutz and Fortnow are generalised.

1 Introduction

We consider the following on-line learning problem: given a sequence of pre-
vious outcomes x1, x2, . . . , xn−1, a prediction strategy is required to output a
prediction γn for the next outcome xn.

We assume that outcomes belong to a finite set Ω; it may be thought of as
an alphabet and sequences as words. We allow greater variation in predictions
though. Predictions may be drawn from a compact set. A loss function λ(ω, γ) is
used to measure the discrepancy between predictions and actual outcomes. The
performance of the strategy is measured by the cumulative loss

∑n
i=1 λ(xi, γi).

Different aspects of this prediction problem have been extensively studied; see
[1] for an overview.

A loss function specifies a prediction environment. We study the notion of
predictability in a particular environment. There are different approaches to
formalising this intuitive notion. One is predictive complexity introduced in [2].
In this paper we introduce another formalisation, namely, asymptotic complexity.

Asymptotic complexity applies to languages, i.e., classes of sequences of out-
comes. Roughly speaking, the asymptotic complexity of a language is the loss per
element of the best prediction strategy. This definition can be made precise in
several natural ways. We thus get several different variants. One of them, which
we call lower non-uniform complexity, generalises the concepts of dimension and
predictability from [3] (the conference version was presented at COLT 2002).
In our framework dimension and predictability can be represented by means of
complexities for two specific games.

In this paper we study the following problem. Let AC1 be asymptotic com-
plexity specified by a loss function λ1 and let AC2 be asymptotic complexity



specified by a loss function λ2. What relations exist between them? We give a
complete answer to this question by describing the set (AC1(L), AC2(L)), where
L ranges over all languages, on the Euclidean plane. The main theorem is for-
mulated in Sect. 4. This set turns out to have a simple geometric description
in terms of so called generalised entropy. Generalised entropy is the optimal
expected loss per element. In the case of the logarithmic loss function, gener-
alised entropy coincides with Shannon entropy. Generalised entropy is discussed
in [4]. In [5] connections between generalised entropy and predictive complex-
ity are studied. We thus generalise the result from [3], where only the case of
predictability and dimension is considered.

Our main result holds for all convex games. We show that this requirement
cannot be omitted.

The definitions and results in this paper are formulated without any reference
to computability. However all constructions in the paper are effective. All the
results from the paper can therefore be reformulated in either computable or
polynomial-time computable fashion provided the loss functions are computable
in a sufficiently efficient way. We discuss this in more detail in Sect. 6.

2 Preliminaries

The notation N refers to the set of all non-negative integers {0, 1, 2, . . .}.

2.1 Games, Strategies, and Losses

A game G is a triple 〈Ω, Γ, λ〉, where Ω is an outcome space, Γ is a prediction
space, and λ : Ω × Γ → [0, +∞] is a loss function.

We assume that Ω = {ω(0), ω(1), . . . , ω(M−1)} is a finite set of cardinality
M < +∞. If M = 2, then Ω may be identified with B = {0, 1}; we will call
this case binary. We denote the set of all finite sequences of elements of Ω by
Ω∗ and the set of all infinite sequences by Ω∞; bold letters x, y etc. are used
to refer to both finite and infinite sequences. By |x| we denote the length of
a finite sequence x, i.e., the number of elements in it. The set of sequences of
length n, n = 0, 1, 2, . . ., is denoted by Ωn. We will also be using the notation
]ix for the number of ω(i)s among elements of x. Clearly,

∑M−1
i=0 ]ix = |x| for

any finite sequence x. By x|n we denote the prefix of length n of a (finite of
infinite) sequence x.

We also assume that Γ is a compact topological space and λ is continuous
w.r.t. the topology of the extended real line [−∞, +∞]. We treat Ω as a discrete
space and thus the continuity of λ in two arguments is the same as continuity
in the second argument.

In order to take some important games into account we must allow λ to
attain the value +∞. However, we assume that for every γ0 ∈ Γ such that
λ(ω∗, γ0) = +∞ for some ω∗ ∈ Ω, there is a sequence γ1, γ2, . . . ∈ Γ such
that γn → γ0 and λ(ω, γn) < +∞ for all n = 1, 2, . . . and all ω ∈ Ω (but, by
continuity, λ(ω∗, γn) → +∞ as n → +∞). In other terms, we assume that every



prediction γ0 leading to infinite loss can be approximated by predictions giving
finite losses.

The following are examples of binary games with Ω = B and Γ = [0, 1]: the
square-loss game with the loss function λ(ω, γ) = (ω − γ)2, the absolute-loss
game with the loss function λ(ω, γ) = |ω − γ|, and the logarithmic game with

λ(ω, γ) =

{
− log2(1 − γ) if ω = 0
− log2 γ if ω = 1

.

A prediction strategy A : Ω∗ → Γ maps a finite sequence of outcomes to a
prediction. We say that on a finite sequence x = x1x2 . . . xn ∈ Ωn the strategy
A suffers loss LossG

A(x) =
∑n

i=1 λ(xi, A(x1x2 . . . xi−1)). By definition, we let

LossG

A(Λ) = 0, where Λ is the sequence of length 0.
We need to define one important class of games. The definition is in geometric

terms. An M -tuple (s0, s1, . . . , sM−1) ∈ [0, +∞]M is a superprediction w.r.t. G

if there is a prediction γ ∈ Γ such that λ(ω(i), γ) ≤ si for all i = 0, 1, . . . , M − 1.
We say that the game G is convex if the finite part of its set of superpredictions,
S ∩ R

M , where S is the set of superpredictions, is convex.
It is shown in [6] that convexity is equivalent to another property called weak

mixability. We will be using these terms as synonyms.

2.2 Generalised Entropies

Fix a game G = 〈Ω, Γ, λ〉. Let P(Ω) be the set of probability distributions on
Ω. Since Ω is finite, we can identify P(Ω) with the standard (M − 1)-simplex

PM = {(p0, p1, . . . , pM−1) ∈ [0, 1]M |
∑M−1

i=0 pi = 1}.
Generalised entropy H : P(Ω) → R is the infimum of expected loss over

γ ∈ Γ , i.e., for p∗ = (p0, p1, . . . , pM−1) ∈ P(Ω)

H(p∗) = min
γ∈Γ

Ep∗λ(ω, γ) = min
γ∈Γ

M−1∑

i=0

piλ(ω(i), γ) .

The minimum in the definition is achieved because λ is continuous and Γ com-
pact.

Since pi can accept the value 0 and λ(ω(i), γ) can be +∞, we need to resolve
the possible ambiguity. Let us assume that in this definition 0× (+∞) = 0. This
is the same as replacing the minimum by the infimum over the values of γ ∈ Γ
such that λ(ω, γ) < +∞ for all ω ∈ Ω.

In the binary case Ω = B the definition can be simplified. Let p be the
probability of 1. Clearly, p fully specifies a distribution from P(B) and thus
P(B) can be identified with the line segment [0, 1]. We get H(p) = minγ∈Γ [(1 −
p)λ(0, γ) + pλ(1, γ)].

If it is not clear from the context what game we are referring to, we will use
subscripts for H . We will use the term G-entropy to refer to generalised entropy
w.r.t. the game G. The notation ABS, SQ, and LOG will be used to refer to the
absolute-loss, square-loss, and logarithmic games respectively, e.g., we will write
‘ABS-entropy’.



3 Asymptotic Complexities

Fix a game G = 〈Ω, Γ, λ〉. We are going to define measures of complexity for
languages, i.e., sets of sequences. The finite and infinite sequences should be
considered separately.

3.1 Finite Sequences

In this subsection we consider languages L ⊆ Ω∗. We shall call the values

AC(L) = inf
A

lim sup
n→+∞

max
x∈L∩Ωn

LossA(x)

n
, (1)

AC(L) = inf
A

lim inf
n→+∞

max
x∈L∩Ωn

LossA(x)

n
(2)

upper and lower asymptotic complexity of L w.r.t. the game G. As with gener-
alised entropies, we will use subscripts for AC to specify a particular game if it
is not clear from the context.

In order to complete the definition, we must decide what to do if L contains
no sequences of certain lengths at all. In this paper we are concerned only with
infinite sets of finite sequences. One can say that asymptotic complexity of a
finite language L ⊆ Ω∗ is undefined. Let us also assume that the limits in (1)
and (2) are taken over such n that L ∩ Ωn 6= ∅. An alternative arrangement is
to assume that in (1) max ∅ = 0, while in (2) max ∅ = +∞.

3.2 Infinite Sequences

There are two natural ways to define complexities of languages L ⊆ Ω∞.
First we can extend the notions we have just defined. Indeed, every nonempty

set of infinite sequences can be identified with the set of all finite prefixes of all
its sequences. The language thus obtained is infinite and has upper and lower
complexities. For the resulting complexities we shall retain the notation AC(L)
and AC(L). We shall refer to those complexities as uniform.

The second way is the following. Let

AC(L) = inf
A

sup
x∈L

lim sup
n→+∞

LossA(x|n)

n
and AC(L) = inf

A

sup
x∈L

lim inf
n→+∞

LossA(x|n)

n
.

We shall refer to this complexity as non-uniform.
The concept of asymptotic complexity generalises certain complexity mea-

sures studied in the literature. The concepts of predictability and dimension
studied in [3] can be easily reduced to asymptotic complexity: the dimension is
the lower non-uniform complexity w.r.t. a multidimensional generalisation of the
logarithmic game and predictability equals 1− AC, where AC is the lower non-
uniform complexity w.r.t. a multidimensional generalisation of the absolute-loss
game.



3.3 Differences between Complexities

Let us show that the complexities we have introduced are different.
First let us show that upper and lower complexities differ. For example,

consider the absolute-loss game. Let 0(n) be the sequence of n zeros and let
Ξn = {0(n)} ×B

n. Consider the language L =
∏∞

i=0 Ξ22i ⊆ B
∞. In other terms,

L consists of sequences that have alternating constant and random segments. It

is easy to see that AC(L) = AC(L) = 1/2, while AC(L) = AC(L) = 0.
Secondly, let us show that uniform complexities differ from non-uniform.

Once again, consider the absolute-loss game. Let L ⊆ B
∞ be the set of all

sequences that have only zeros from some position on. In other terms, L =

∪∞
n=0(B

n×{0(∞)}), where 0(∞) is the infinite sequence of zeros. We have AC(L) =
AC(L) = 0 while AC(L) = AC(L) = 1/2.

4 Main Result

Consider two games G1 and G2 with the same finite set of outcomes Ω. Let
H1 be G1-entropy and H2 be G2-entropy. The G1/G2-entropy set is the set
{(H1(p), H2(p)) | p ∈ P(Ω)}. The convex hull of the G1/G2-entropy set is called
the G1/G2-entropy hull.

We say that a closed convex S ⊆ R
2 is a spaceship if for every pair of

points (x1, y1), (x2, y2) ∈ S the point (max(x1, x2), max(y1, y2)) belongs to S.
The spaceship closure of a set H ⊆ R

2 is the smallest spaceship containing H,
i.e., the intersection of all spaceships containing H.

We can now formulate the main result of this paper.

Theorem 1. If games G1 and G2 have the same finite outcome space Ω and
are convex, then the spaceship closure of the G1/G2-entropy hull coincides with
the following sets, where AC1 and AC2 are asymptotic complexities w.r.t. G1

and G2:

– {(AC1(L), AC2(L)) | L ⊆ Ω∗ and L is infinite};
– {(AC1(L), AC2(L)) | L ⊆ Ω∗ and L is infinite};
– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 6= ∅};
– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 6= ∅};

– {(AC1(L), AC2(L)) | L ⊆ Ω∞ and L 6= ∅};
– {(AC

1
(L), AC

2
(L)) | L ⊆ Ω∞ and L 6= ∅}.

In other words, the spaceship closure S of the entropy hull contains all points
(AC1(L), AC2(L)), where AC is one type of complexity, and these points fill the
set S as L ranges over all languages that have complexity. The last item on the
list covers Theorem 5.1 (Main Theorem) from [3].

Appendices A and B contain a discussion of shapes of the entropy hull and
some examples. The theorem is proved in Sect. 5.

The requirement of convexity cannot be omitted. For example, consider the
simple prediction game 〈B, B, λ〉, where λ(ω, γ) is 0 if ω = γ and 1 otherwise.



The convex hull of the set of superpredictions w.r.t. the simple prediction
game coincides with the set of superpredictions w.r.t. the absolute-loss game.
Geometric considerations imply that their generalised entropies coincide. Thus
the maximum of the generalised entropy w.r.t. the simple prediction game is 1/2
(see Appendix B). On the other hand, it is easy to check that AC(B∗) = 1, where
AC is any of the asymptotic complexities w.r.t. the simple prediction game.

The statement of the theorem does not apply to pairs (AC1(L), AC2(L)) or

pairs (AC1(L), AC
2
(L)). Indeed, let G1 = G2. Then H1 = H2 and the entropy

hull with its spaceship closure are subsets of the bisector of the first quadrant.
At the same time we know that upper and lower complexities differ and thus
there will be pairs outside the bisector.

5 Proof of the Main Theorem

In this section we prove Theorem 1.
The following lemma proved in Appendix C allows us to ‘optimise’ the per-

formance of a strategy w.r.t. two games. We shall call it recalibration lemma.

Lemma 1. If G1 and G2 are convex games with the same finite set of outcomes
Ω and H is the G1/G2-entropy hull, then for every prediction strategy A and
positive ε there are prediction strategies A1

ε and A2
ε and a function f : N → R

such that f(n) = o(n) as n → +∞ and for every sequence x ∈ Ω∗ there exists a
point (ux, vx) ∈ H such that the following inequalities hold:

ux|x| ≤ LossG1

A
(x) + ε|x| , (3)

LossG1

A1
ε
(x) ≤ |x|(ux + ε) + f(|x|) , (4)

LossG2

A2
ε
(x) ≤ |x|(vx + ε) + f(|x|) . (5)

Below in Subsect. 5.1 we use this lemma to show that pairs of complexities
belong to the spaceship closure. It remains to show that the pairs fill in the
closure and it is done in Appendix D.

5.1 Every Pair of Complexities Belongs to the Spaceship Closure of
the Hull

Let AC be one of the types of complexity we have introduced. Let us show that
for every language L the pair (AC1(L), AC2(L)) belongs to the spaceship closure
S of the entropy hull.

We start by showing that the pair (AC1(L), AC2(L)) belongs to the cucumber
closure C of the G1/G2-entropy hull H (see Appendix A for a definition).

Let AC1(L) = c. Lemma 1 implies that cmin ≤ c ≤ cmax, where cmin =
minp∈P(Ω) H1(p) and cmax = maxp∈P(Ω) H1(p).

We need to show that c2 ≤ AC2(L) ≤ c1, where c1 and c2 correspond to
intersections of the vertical line x = c with the boundary of the cucumber as
shown on Fig. 1.



Cc1

c

c2

Fig. 1. A section of the cucumber hull

Let f1, f2 : [cmin, cmax] → R be the non-decreasing functions that bound C
from above and below, i.e., C = {(x, y) | x ∈ [cmin, cmax] and f2(x) ≤ y ≤ f1(x)}
(see Appendix A). We have f1(c) = c1 and f2(c) = c2. The function f1 is concave
and the function f2 is convex; therefore they are continuous.

Since AC1(L) = c, for every ε > 0 there is a prediction strategy A such that
for certain infinite sets of finite sequences x there are functions g : N → R such
that g(n) = o(n) as n → +∞ and for all appropriate x we have

LossG1

A
(x) ≤ (c + ε)|x| + g(|x|) . (6)

Let us apply Lemma 1 to A and ε. We obtain the strategies A1
ε and A2

ε and a
function f : N → R such that f(n) = o(n) as n → +∞ and for every x there
exists a point (ux, vx) ∈ H such that the inequalities

LossG1

A1
ε
(x) ≤ |x|(ux + ε) + f(|x|) ,

LossG2

A2
ε
(x) ≤ |x|(vx + ε) + f(|x|) ,

|x|ux ≤ LossG1

A
(x) + ε|x| ≤ (c + 2ε)|x| + g(|x|)

hold. The last inequality implies that ux ≤ c + 2ε + o(1) at |x| → ∞ and thus
for all sufficiently long sequences x we have ux ≤ c + 3ε. Therefore the point
(ux, vx) lies to the left of the line x = c + 3ε. This implies vx ≤ f1(c + 3ε) and
AC2(L) ≤ f1(x + 3ε) + ε. Since f1 is continuous and ε > 0 is arbitrary, we get
AC2(L) ≤ f1(c) = c1.

Now let us prove that AC2(L) ≥ c2. Assume the contrary. Let AC2(L) =
c2 − δ2, where δ2 > 0. There is δ1 > 0 such that f2(c − δ1) = c2 − δ2. By
applying the same argument as above to the ‘swapped’ situation, one can show
that AC1(L) ≤ c − δ1. This contradicts the assumption that AC1(L) = c.

In order to show that (AC1(L), AC2(L)) ∈ S, it remains to prove that
(AC1(L), AC2(L)) /∈ C \ S. Let U = {(u, v) ∈ R

2 | ∃(h1, h2) ∈ H : h1 ≤
u and h2 ≤ v} be the set of points that lie ‘above’ the entropy set H. Let ei,



i = 0, 1, . . . , M − 1, be the vector with the i-th component equal to 1 and all
other components equal to 0. Clearly, ei ∈ PM ; it represents a special degenerate
distribution. We have H1(ei) = minγ∈Γ1 λ1(ω

(i), γ). For any prediction strategy
A we get

LossG1

A
(x) ≥

M−1∑

i=0

]ix min
γ∈Γ1

λ1(ω
(i), γ) = |x|

M−1∑

i=0

piH1(ei) ,

where pi = ]ix/|x|. The same holds for G2. We thus get inequalities

LossG1

A1
(x)

|x|
≥

M−1∑

i=0

piH1(ei) and
LossG2

A2
(x)

|x|
≥

M−1∑

i=0

piH2(ei) ,

where pi depend only on x, for all strategies A1 and A2. Therefore the pair
(LossG1

A1
(x)/|x|, LossG2

A2
(x)/|x|) belongs to U . Since U is closed, the same holds

for every pair (AC1(L), AC2(L)).

6 Computability Aspects

The definition of the asymptotic complexity can be modified in the following
way. The infima in definitions may be taken over a particular class of strategies.
Examples of such classes are the computable strategies and polynomial-time
computable strategies. This provides us with different definitions of asymptotic
complexity. The theorems from this paper still hold for these modified complex-
ities provided some straightforward adjustments are made.

If we want to take computability aspects into consideration, we need to im-
pose computability restrictions on loss functions. If we are interested in com-
putable strategies, it is natural to consider computable loss functions.

The definition of weak mixability needs modifying too. It is natural to require
that the strategy A obtained by aggregating A1 and A2 is computable by an
algorithm that has access to oracles computing A1 and A2. Results from [6] still
hold since strategies can be merged effectively provided λ is computable.

The recalibration procedure provides us with strategies A1
ε and A2

ε that are
computable given an oracle computing A. The proof of the main theorem re-
mains valid almost literally. Note that we do not require the languages L to be
computable in any sense. We are only concerned with transforming some strate-
gies into others. If the original strategies are computable, the resulting strategies
will be computable too. All pairs (AC1(L), AC2(L)) still belong to the spaceship
closure of the entropy hull and fill it.

Similar remarks can be made about polynomial-time computability.
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Appendix A. Shapes of Entropy Hulls

In this section we discuss geometrical aspects of the statement of the main
theorem in more detail.

We start with a fundamental property of entropy. The set PM is convex.
Therefore we can prove by direct calculation the following lemma.

Lemma 2. If H : PM → R is G-entropy, then H is concave.

Note that concavity of H implies continuity of H . Therefore every entropy
set is a closed set w.r.t. the standard Euclidean topology. It is also bounded.
Thus the entropy hull is also bounded and closed (see, e.g., [7], Theorem 10).

We need to introduce a classification of planar convex sets. A closed convex
C ⊆ R

2 is a cucumber if for every pair of points (x1, y1), (x2, y2) ∈ C the points
(min(x1, x2), min(y1, y2)) and (max(x1, x2), max(y1, y2)) belong to C. In other
terms, a closed convex C is a cucumber if and only if there are nondecreasing
functions f1, f2 : I → R, where I is an interval, perhaps infinite, such that
C = {(x, y) | x ∈ I and f1(x) ≤ y ≤ f2(x)}.

If a closed convex set is not a cucumber, we call it a turnip.

We will formulate a criterion for H to be a cucumber. Let arg min f , where
f is a function from I to R, be the set of points of I where f achieves the value
of its global minimum on I. If no global minimum exists, the set argmin f is
empty. The notation argmax f is defined similarly.

Lemma 3. If H1, H2 : I → R, where I ⊆ R
n is a closed bounded set, are two

continuous functions, then the convex hull of the set {(H1(p), H2(p)) | p ∈ I} is



a cucumber if and only if the following pair of conditions hold:

argminH1 ∩ argmin H2 6= ∅

arg maxH1 ∩ argmax H2 6= ∅ .

In the binary case natural games, including the absolute-loss, square-loss
and logarithmic games, are symmetric, i.e., their sets of superpredictions are
symmetric w.r.t. the bisector of the positive quadrangle. For example, every game
G = 〈B, [0, 1], λ〉 such that λ(0, γ) = λ(1, 1 − γ) for all γ ∈ [0, 1] is symmetric.
Clearly, if H is G-entropy w.r.t. a symmetric game G, then H(p) = H(1 − p)
for all p ∈ [0, 1]. Thus H achieves its maximum at p = 1/2 and its minimum at
p = 0 and p = 1. Therefore if H1 and H2 are entropies w.r.t. symmetric games
G1 and G2, then their G1/G2-entropy hull is a cucumber.

The cucumber closure of a set H ⊆ R
2 is the smallest cucumber that contains

H, i.e., the intersection of all cucumbers that contain H.
The definition of a spaceship given above uses only the upper point of the

two that should belong to a cucumber. In terms of boundaries the definition
is as follows. A closed convex S ⊆ R

2 is a spaceship if and only if there are
functions f1, f2 : I → R, where I is an interval, perhaps infinite, such that f2 is
non-decreasing and S = {(x, y) | x ∈ I and f1(x) ≤ y ≤ f2(x)}.

Lemma 4. If H1, H2 : I → R, where I ⊆ R is a closed bounded interval, are
two continuous functions, then the convex hull of the set {(H1(p), H2(p)) | I} is
a spaceship if and only if the following condition holds:

arg maxH1 ∩ argmax H2 6= ∅ . (7)

Note that the definitions of turnips, cucumbers, and spaceships as well as of
cucumber and spaceship closures are coordinate-dependent.

Appendix B. Examples of Entropy Hulls

This section contains some examples of entropy sets and hulls for the binary
case.

It is easy to check by direct calculation that the ABS-entropy is given by
HABS(p) = min(p, 1 − p), the SQ-entropy is given by HSQ(p) = p(1 − p), and
the LOG-entropy is given by HLOG(p) = −p log2 p− (1−p) log2(1−p), and thus
it coincides with Shannon entropy. The entropy hulls are shown on Figs. 2, 3,
and 4; the corresponding entropy sets are represented by bold lines. Since all the
three games are symmetric, the entropy hulls are cucumbers.

Let us construct an entropy hull that is a turnip. It follows from the previous
section, that the example must be rather artificial. Let G1 = 〈B, [0, 1], λ1〉, where
λ1(0, γ) = γ and λ1(1, γ) = 1 − γ

2 for all γ ∈ [0, 1], and let G2 = 〈B, [0, 1], λ2〉,
where λ2(0, γ) = 1+ γ

2 and λ2(1, γ) = 3
2−γ for all γ ∈ [0, 1]. It is easy to evaluate

the corresponding entropies, H1(p) = min(p, 1− p
2 ) and H2(p) = min(1+ p

2 , 3
2−p).
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Fig. 5. The G1/G2-
entropy hull (a turnip)

Fig. 6. The cucumber clo-
sure

Fig. 7. The spaceship clo-
sure

Fig. 5 shows G1/G2-entropy hull, which is a turnip. Figure 6 shows its cucumber
closure, while Fig. 7 shows its spaceship closure.

Appendix C. Proof of the Recalibration Lemma

Let G1 = 〈Ω, Γ1, λ1〉 and G2 = 〈Ω, Γ2, λ2〉. We shall describe the procedure
transforming A into A1

ε and A2
ε. The construction is in four stages.

First let us perform an ε-quantisation of A.
Lemma 5. For any G = 〈Ω, Γ, λ〉 and ε > 0 there is a finite set Γε such that
for any γ ∈ Γ there is γ∗ ∈ Γε such that λ(ω, γ∗) ≤ λ(ω, γ)+ ε for every ω ∈ Ω.

Lemma 2 from [6] implies that it is sufficient to consider bounded loss func-
tions λ. If λ is bounded, the lemma follows from continuity of λ and compactness
of Γ .

Let us find such finite subsets Γε ⊆ Γ1 and Γ ′′
ε ⊆ Γ2. Without restricting

the generality, one can assume that they are of the same size |Γε| = |Γ ′′
ε | = N ;

indeed, if this is not the case, we can add more elements to the smaller set. Let
Γε = {γ1, γ2, . . . , γN} and Γ ′′

ε = {γ′′
1 , γ′′

2 , . . . , γ′′
N}.

There is a strategy A
q
ε that outputs only predictions from Γε and such that

LossG1

A
q
ε
(x) ≤ LossG1

A
(x) + ε|x| for all x ∈ Ω∗.

Secondly let us construct the table of frequencies.
Given a sequence x of length n, let us count the number of times each of

these predictions γ1, γ2, . . . , γN occurs as Aq
ε predicts elements of x. For each

j = 1, 2, . . . , N and i = 0, 1, . . . , M − 1 let n
(i)
j be the number of occasions when



Table 1. Predictions and outcomes for a given sequence x

Predictions Number of ω(0)s Number of ω(1)s
... Number of ω(M−1)s

γ1 n
(0)
1 n

(1)
1 n

(M−1)
1

γ2 n
(0)
2 n

(1)
2

... n
(M−1)
2

. . .

γj n
(0)
j n

(1)
j

... n
(M−1)
j

. . .

γN n
(0)
N n

(1)
N

... n
(M−1)
N

Aq
ε outputs the prediction γj just before the outcome ω(i) occurs. We get Table 1,

where
∑N

j=1 n
(i)
j = ]ix for all i = 0, 1, . . . , M − 1.

Thirdly we perform the recalibration and construct auxiliary ‘strategies’ Ã
(1)
ε

and Ã
(2)
ε . Formally they are not strategies because they have access to side

information.
Suppose that we predict elements of x and have access to Table 1 right from

the start. We can optimise the performance of Aq
ε as follows. If on some step

Aq
ε outputs γj , we know that we are on the j-th line of the table. However

γj is not necessarily the best prediction to output in this situation. Let γ∗
j be

an element of Γε where the minimum minγ∈Γε

∑M−1
i=0 n

(i)
j λ1(ω

(i), γ) is attained.

This minimum can be expressed though the generalised entropy H1. Put p
(i)
j =

n
(i)
j /

∑
i n

(i)
j ; the M -tuple pj = (p

(0)
j , p

(1)
j , . . . , p

(M−1)
j ) is a distribution on Ω.

We have
∑M−1

i=0 n
(i)
j λ1(ω

(i), γ) =
(∑

i n
(i)
j

)∑M−1
i=0 p

(i)
j λ1(ω

(i), γ) and thus

(
∑

i

n
(i)
j

)
H1(pj) ≤

M−1∑

i=0

n
(i)
j λ1(ω

(i), γ∗
j ) ≤

(
∑

i

n
(i)
j

)
(H1(pj) + ε) . (8)

Let us output γ∗
j each time instead of γj .

This is how the ‘strategy’ Ã1
ε works. The loss of Ã1

ε on x is LossG1

fA1
ε

(x) =

∑N
j=1

∑M−1
i=0 n

(i)
j λ1(ω

(i), γ∗
j ). Put qj =

(∑M−1
i=0 n

(i)
j

)
/n; we have

∑
j qj = 1. It

follows from (8) that
∣∣∣∣∣∣
LossG1

fA1
ε

(x) − n

N∑

j=1

qjH1(pj)

∣∣∣∣∣∣
≤ εn . (9)

On the other hand, LossG1

fA1
ε

(x) ≤ LossG1

A
q
ε
(x) ≤ LossG1

A
(x) + εn because Ã1

ε at-

tempts to minimise losses. Note that each sequence x ∈ Ω∗ specifies its own sets
of values p and q.



The strategy Ã2
ε works as follows. It simulates Ã

q
ε and when Ã

q
ε outputs γj

it finds itself on the j-th line of the table and outputs γ∗∗
j ∈ Γ ′′

ε such that the

minimum minγ∈Γ ′′

ε

∑M−1
i=0 n

(i)
j λ2(ω

(i), γ) is attained on γ∗∗
j . We obtain

∣∣∣∣∣LossG2

fA2
ε

(x) − n

N∑

i=1

qiH2(pi)

∣∣∣∣∣ ≤ εn . (10)

Finally, we should get rid of the side information; prediction strategies are
not supposed to use any. There is a finite number (to be precise, NN ) of functions
that map {1, 2, . . . , N} into itself. Every σ : {1, 2, . . . , N} → {1, 2, . . . , N} defines
a strategy that works as follows. The strategy runs Aq

ε, and each time Aq
ε outputs

γi our strategy outputs γσ(i), i = 1, 2, . . . , N . For every finite sequence x there

is a mapping σ such that the corresponding strategy works exactly like Ã1
ε.

Since the game G1 is weakly mixable, we can obtain A1
ε that works nearly

as good as each one from the final pool of strategies when the loss is measured
w.r.t. the loss function λ1. We get

LossG1

A1
ε
(x) ≤ n

N∑

i=1

qiH1(pi) + εn + f1(n) (11)

for every x, where f1(n) = o(n) as n → +∞. Similarly, there is A2
ε such that

LossG2

A2
ε
(x) ≤ n

N∑

i=1

qiH2(pi) + εn + f2(n) (12)

for every x, where f2(n) = o(n) as n → +∞. The lemma follows.

Appendix D. Filling in the Spaceship

We shall now construct languages L ⊆ Ω∞ such that AC1(L) = AC1(L) =

AC1(L) = AC
1
(L) as well as AC2(L) = AC2(L) = AC2(L) = AC

2
(L) and pairs

(AC1(L), AC2(L)) fill the spaceship closure.
We start by constructing languages filling in the entropy set, then construct

languages filling in the entropy hull and finally obtain languages filling in the
spaceship closure. First let u = H1(p) and v = H2(p) for some p ∈ P(Ω).
Lemma 6. For every p ∈ P(Ω) there is a set Lp ⊆ Ω∞ such that for every

game G = 〈Ω, Γ, λ〉 we have AC(Lp) = AC(Lp) = AC(Lp) = AC(Lp) = H(p).

Proof (of the Lemma).
Let p = (p0, p1, . . . , pM−1) ∈ P(Ω). If some of pi are equal to 0, we can

completely ignore those dimensions, or, in other words, consider the games with
the sets of superpredictions that are the projection of the sets of superpredictions
w.r.t. G1 and G2 to non-zero directions. So let us assume, without restricting
the generality, that all pi 6= 0.



Consider the set Ξ
(p)
n ⊆ Ωn of sequences x of length n with the following

property. For each i = 0, 1, . . . , M − 1 the number of ω(i)s among the elements
of x is between the numbers npi − n3/4 and npi + n3/4, i.e., npi − n3/4 ≤ ]ix ≤
npi + n3/4 for i = 0, 1, . . . , M − 1.

We need the Chernoff bound in Hoeffding’s form (see Theorem 1 in [8]):

Proposition 1 (Chernoff bound). If ξ1, ξ2, . . . , ξn are independent random
variables with finite first and second moments and such that 0 ≤ ξi ≤ 1 for all
i = 1, 2, . . . , n then

Pr{ξ − µ ≥ t} ≤ e−2nt2 ,

for all t ∈ (0, 1 − µ), where ξ = (ξ1 + ξ2 + . . . + ξn)/n and µ = Eξ.

Let ξ
(p)
1 , ξ

(p)
2 , . . . , ξ

(p)
n be independent random variables that accept the values

ω(i) with probabilities pi, i = 0, 1, . . . , M − 1. The Chernoff bound implies that

Pr
{∣∣∣]i(ξ

(p)
1 ξ

(p)
2 . . . , ξ(p)

n ) − pin
∣∣∣ ≥ n3/4

}
≤ 2e−2

√
n (13)

for all n ≥ N0 (the constant N0 is necessary in order to ensure that t ≤ 1− µ in
the bound) and all i = 0, 1, . . . , M − 1. If we denote by Prp(S) the probability

that ξ
(p)
1 ξ

(p)
2 . . . , ξ

(p)
n ∈ S, we get Prp(Ω

n \ Ξ
(p)
n ) ≤ 2Me−2

√
n.

Let Lp = Ξ
(p)
n1 ×Ξ

(p)
n2 ×Ξ

(p)
n3 . . .×Ξ

(p)
nk × . . . ⊆ Ω∞. In other terms, Lp consists

of all infinite sequences x with the following property. For every non-negative

integer k the elements of x from
∑k−1

j=1 nj to
∑k

j=1 nj form a sequence from Ξ
(p)
nk

.
We will refer to these elements as the k-th segment of Lp. Take nj = N0 + j so

that
∑k

j=1 nj = kN0 + k(k + 1)/2. We will show that Lp proves the lemma.

First let us prove that AC(Lp) ≤ H(p). Let A
(p) be the strategy that

always outputs the same prediction γ∗ ∈ argminγ∈Γ

∑M−1
i=0 piλ(ω(i), γ). Let

n =
∑k

j=1 nj . There is a constant Cγ∗ > 0 such that for every x ∈ Lp we get

LossA(p)(x|n) ≤ H(P )n + MCγ∗

k∑

j=1

n
3/4
j .

We have ∑k
j=1 n

3/4
j

n
=

∑k
j=1(N0 + j)3/4

∑k
j=1(N0 + j)

∼
4
7k7/4

1
2k2

→ 0

as k → +∞. Therefore AC(Lp) and AC(Lp) do not exceed H(p).

Now consider m such that n−nk =
∑k−1

j=1 nj < m <
∑k

j=1 nj = n. It is easy
to see that |LossA(p)(x|n) − LossA(p)(x|m)| ≤ Cγ∗nk. We have

nk

m
≤

(N0 + k)
∑k−1

j=1 (N0 + j)
=

(N0 + k)

N0(k − 1) + k(k − 1)/2
→ 0 (14)

and hence the upper complexities do not exceed H(p) either.



Now let us prove that AC(Lp) ≥ H(p). Consider a strategy A. First let us
assume that λ is bounded and D > 0 is an upper bound on λ. We have

H(p)n ≤ ELossA(ξ
(p)
1 ξ

(p)
2 . . . , ξ(p)

n ) ≤ Pr
p

(Ξn) max
x∈Ξn

LossA(x) + Pr
p

(Ωn \Ξn)Dn .

Therefore there is a sequence x ∈ Ξn such that

LossA(x) ≥ H(p)n − Pr
p

(Ωn \ Ξn)Dn ≥ H(p)n − 2nMDe−2
√

n

provided n ≥ N0.
We construct x ∈ Lp from finite segments of length ni. The series

∑∞
j=1(N0+

j)e−2
√

N0+j converges and thus upper complexities are at least H(p). We can
extend this bound to lower complexity by using (14).

Now let λ be unbounded. Take λ(D) = min(λ, D), where D is a constant. It

is easy to see that for sufficiently large D we get minγ∈Γ

∑M−1
i=0 piλ(ω(i), γ) =

minγ∈Γ

∑M−1
i=0 piλ

(D)(ω(i), γ) (recall that p ∈ P(Ω) is fixed).
Pick such D and let G(D) be the game with the loss function λ(D). It is

easy to see that for every strategy A and every sequence x we have LossG

A(x) ≥

LossG
(D)

A (x). Since the loss function λ(D) is bounded, one can apply the above
argument; for every A and every n there is a sequence x ∈ Lp such that

LossG
(D)

A (x|n) ≥ H(p)n − o(n). The inequality implies LossG

A(x|n) ≥ H(p)n −
o(n). This proves the lemma. ut

Secondly let (u, v) be some point from H. The definition of convexity implies
that there are probabilities p1, p2, . . . , pN ∈ P(Ω) and weights q1, q2, . . . , qN ∈

[0, 1] such that u =
∑N

j=1 qjH1(pj) and v =
∑N

j=1 qjH2(pj).
Let us ‘paint’ all positive integers into N colours 1, 2, . . . , N . Number 1 is

painted colour 1. Suppose that all numbers from 1 to n have been painted and
there are n1 numbers among them painted colour 1, n2 numbers painted colour
2 etc. The values qjn − nj are deficiencies. Let j0 corresponds to the largest
deficiency (if there are several largest deficiencies, we take the one with the
smallest j). We paint the number n + 1 the colour j0.

During the infinite construction process deficiencies never exceed N . Indeed,
the value −(qjn − nj) never exceeds 1 and the sum of all deficiencies is 0.

We now proceed to constructing L ⊆ Ω∞ that corresponds to (u, v). The set
L consists of all infinite sequences x with the following property. The subsequence
of x formed by bits with numbers painted the colour j belongs to Lpj

from
Lemma 6 for all j = 1, 2, . . . , N . One can easily check that L has all the required
properties.

Thirdly let (u, v) ∈ S \ H. It is easy to check that if a game G is weakly
mixable, then for every pair of languages L1, L2 constructed above we have
AC(L1 ∪ L2) = max(AC(L1), AC(L2)).


